Class 4: Allomorphy

Andrew Murphy andrew.murphy@uni-potsdam.de

1 Two kinds of allomorphy

- We have already seen rules for English such as those in (1).
- (1) a. [PAST] $\leftrightarrow \emptyset$ / $\{\sqrt{\text{BREAK}}, \sqrt{\text{WRITE}}, ...\}$ ____ b. [PAST] $\leftrightarrow \text{-ed}$ c. [PL] $\leftrightarrow \text{-en}$ / $\{\sqrt{\text{OX}}, \sqrt{\text{CHILD}}, ...\}$ ____ d. [PL] $\leftrightarrow \text{-s}$
- The context specification of these rules mentions morphosyntactic features/structures. This is therefore often referred to as *grammatically-conditioned allomorphy*.
- In addition, we have cases of *phonologically-conditioned allomorphy*:

- Case suffixes in Korean:
- Both kinds of allomorphy seem necessary, but are the restrictions on such rules?
 - The *directionality* of allomorphy: Are there principled asymmetries regarding where grammatically vs. phonologically conditioned allomorphy is possible?
 - The *locality* of allomorphy: Are there restrictions on the relation between the target and trigger in a allomorphic conditioning relation?

2 Directionality of allomorphy

- A frequent argument is that allomorphy shows asymmetries in directionality, i.e. inwards vs. outwards (Carstairs 1987; Carstairs-McCarthy 2001).
- Hypothesis: Given a structure such as (5). An affix B may be sensitive to the phonological forms of inner affixes (C) and to morphological features of outer affixes (A).

- Bobaljik (2000) argued that this follows from a few basic assumptions in a DM approach:
 - Words have hierarchical internal structure
 - Vocabulary Insertion proceeds 'inside-out', i.e. cyclically starting with the root
 - Vocabulary Insertion is *replacive*, i.e. features are overwritten by phonological forms
 - (6) a. [[[C] B] A]
 - b. [[[*do*] B] A]
 - c. [[[do] re] A]
 - d. [[[do] re] mi]

1

- Classic argument by Bobaljik (2000) is based on Itelmen (Chukotko-Kamchatkan).
- Itelmen has two agreement suffixes (one prefixal, one suffixal):

- The form of the suffix can be sensitive to the features of both the subject and object:
 - (8) t- $t\phi^{\frac{1}{2}}$ - $a^{\frac{1}{2}}$ - $\frac{ki}{CL}$ - $\frac{\check{cen}}{1SG.SBJ}$ bring -FUT -CL.II -1>3SG.OBJ 'I will bring it.'
 - (9) Ø- tφ -s -<u>čŋ</u> <u>-in</u> 2SG.SBJ- bring -PRES -CL.II -2SG.SBJ>3SG.OBJ 'You are bringing it.'
 - (10) Ø- ta β ol -a $\frac{1}{2}$ -qzu -s - $\frac{cin}{2}$ -nen 3sg.sbj- embrace -desid -ASP -PRES -CL.II -3.sbj>3sg.obj 'He is always wanting to embrace her.'
- Also notice the forms of the class suffix. Below is a further allomorph:
 - (11) n- $t\phi$ 1 \underline{xk} \underline{in} IMP- bring -CL.II 2SG.OBJ

 'Someone brought you.'
- Furthermore, the form of the class marker is sensitive to these features, too.
- We can posit the following rules for the object agreement suffix:

(12) a.
$$[A_{grO} 3SG] \leftrightarrow -in / \underline{\qquad} [A_{grS} 2SG]$$

b. $[A_{grO} 3SG] \leftrightarrow -nen / \underline{\qquad} [A_{grS} 3SG]$
c. $[A_{grO} 3SG] \leftrightarrow -\check{c}en$

• We then have further rules for the class suffix:

(13) a. Class
$$\leftrightarrow$$
 -čij / [CLASS:II] ___ [AgrO 3SG] [AgrS SG] b. Class \leftrightarrow -nen / [CLASS:II] ___ [AgrS 3SG] c. Class \leftrightarrow -če(?)n

- Allomorphy of the object suffix is outwardly-sensitive for features of the AgrS head.
- Allomorphy of the class suffix is sensitive to features of outer agreement suffixes.
- It is inwardly sensitive to the class feature of the root, which Bobaljik also assumes is inserted with its form.

${\bf 2.1} \quad Inwards\text{-}sensitive grammatically\text{-}conditioned allomorphy?}$

- We do not expect to find inwardly-sensitive grammatically-conditioned allomorphy.
- Recall the Latin data we saw in the first class:

2

(15)		Perfect (ind.)	Perfect (subj.)	Pluperfect (ind.)	Future perfect
	ısg	amā-v- ī	amā-ve-ri-m	amā-ve-ra-m	amā-ve-r-ō
	2sg	amā-v- istī	amā-ve-rĭ-s	amā-ve-rā-s	amā-ve-rī-s
	3sg	amā-vi-t	amā-ve-ri-t	amā-ve-ra-t	amā-ve-ri-t
	ıpl	amā-vi-mus	amā-ve-rī-mus	amā-ve-rā-mus	amā-ve-rī-mus
	2pl	amā-v- istis	amā-ve-rī-tis	amā-ve-rā-tis	amā-ve-rī-tis
	3pl	amā-v- ērunt	amā-ve-ri-nt	amā-ve-ra-nt	amā-ve-ri-nt

• Carstairs-McCarthy (2001) points out that this looks like an example of inward-sensitive grammatically-conditioned allomorphy.

• The special perfect indicative forms must be sensitive to the inner perfect feature on Asp:

• Consider the various forms of the Bulgarian definite suffix that we saw in class 2:

(17)	masculir		feminin	e singular, -0	C#	
-	brat 'brother'	brat-a 'the brother'	krăv	'blood'	krăv- tá	'the blood'
	čaj 'tea'	čaj- $\underline{\mathbf{a}}$ 'the tea'	prólet	'spring'	prolet- <u>tá</u>	'the spring'
	/	Non-/a/-final, plural				
	žena 'woman' žena- ta 'the woman'		ženi	'women'	ženi- te	'the women'
	deca 'children'	deca- $\overline{\mathbf{ta}}$ 'the children'	măže	'men'	măže- <u>te</u>	'the men'
	el					
	more'sea'	more- <u>to</u> 'the sea'				
	taksi 'taxi'	taksi- <u>to</u> 'the taxi'				

• This requires inward-sensitivity for features and form (Gribanova and Harizanov 2017):

a.
$$[DEF] \leftrightarrow -a$$
 / $[MASC, SG], C\#$ _____
b. $[DEF] \leftrightarrow -t\acute{a}$ / $[FEM, SG], C\#$ ____
c. $[DEF] \leftrightarrow -ta$ / $a\#$ ____
d. $[DEF] \leftrightarrow -te$ / $[PL]$ ____
e. $[DEF] \leftrightarrow -to$

• Accusative case in Moro shows a similar pattern (Jenks and Sande 2017). The accusative case suffix is only possible with proper names:

(19) a. éga-nac-ó ŋállo-ŋ kója-ŋ

18G.RTC-give-PFV Ngallo-ACC Koja-ACC

'I gave Ngallo to Koja.' / 'I gave Koja to Ngallo.'

b. éga-nac-ó kója-ŋ diə(*-ŋ)

1SG.RTC-give-PFV Koja-ACC cow(*-ACC)

'I gave the cow to Koja/Koja to the cow.'

c. éga-nac-ó kója-ŋ ŋera(*-ŋ)
1SG.RTC-give-PFV Koja-ACC girl(*-ACC)
'I gave a girl to Koja/Koja to a girl.'

- But could a syntactic solution be possible (e.g. Differential Object Marking)?
- In response, we could abandon the assumption that Vocabulary Insertion is fully replacive.
- There are different options here:
- Halle (1990, 1992) views abstract morphemes as ordered pairs containing a set of features
 F and a phonological placeholder Q: <F, Q>. If Vocbulary Insertion just replaces Q,
 then inwardly-sensitive grammatically-conditioned allomorphy should still be possible.
- Embick and Noyer (2007) assume that Vocabulary Insertion involve mapping the syntactic representation to a 'PF image'. Therefore, there is no consumption of resources.
- Recall from class 3 that Arregi and Nevins (2012) assume parallel hierarchical and linear representations.
- An advantage of not replacing the morphosyntactic properties of an abstract morpheme post insertion is that we do not need to rules that refer to class features.
- Instead the rule can just list the roots that belong to that class (21).

(21) Class
$$\leftrightarrow$$
 -čij / $\{\sqrt{BRING},...\}$ [AgrO 3SG] [AgrS SG]

2.2 Outwards-sensitive phonologically-conditioned allomorphy?

- Are there examples of phonologically-conditioned allomorphy that look outwards?
- Unlike inwards-sensitive grammatically-conditioned allomorphy, there are very few clear examples of this.
- Recent example from Nez Perce (Deal and Wolf 2017):

- In general, a complication when looking at phonologically-conditioned allomorphy is that such cases are often *phonologically-optimizing*, i.e. they avoid codas/hiatus.
- So, one often has the option of deriving what looks like phonologically-conditioned allomorphy by using a single underlying representation and a more powerful phonology.

(25) a. [PRES, 3SG] \leftrightarrow /- \ni z/ / [sibilant] ____ b. [PRES, 3SG] \leftrightarrow /-s/ / [voiceless] ____ c. [PRES, 3SG] \leftrightarrow /-z/

- Instead of this treating this as allomorphy, we could say that there is a single underlying representation /-z/ that is devoiced when it follows a voiceless consonant and there is ə-epenthesis before a sibilant.
- Admittedly, the Nez Perce case is less straightforward to reanalyze in this way, but see Kiparsky (2021).

3 Locality of allomorphy

Question

How local must the trigger and target in an allomorphic conditioning relation be?

3.1 *ABA in comparatives

• We find a classic case of stem allomorphy (suppletion) in comparatives:

(26) good - bett-er - be-st bad - worse - wor(se)-st

• For some cases we need *mutual conditioning*: CMPR triggers a special form of the root $\sqrt{\text{BAD}}$, while the root triggers a null form of CMPR.

(28) a. CMPR \leftrightarrow -Ø / $\{\sqrt{BAD}, ...\}$ ____

c. $\sqrt{\text{GOOD}}$ \leftrightarrow bett- / ___ CMPR d. $\sqrt{\text{GOOD}}$ \leftrightarrow good

bad

• Do you notice any redundancy in these rules?

 \sqrt{BAD}

Containment Hypothesis (Bobaljik 2012) -

The structural representation of the comparative is contained in the representation of the superlative.

• In many languages, this containment is transparent:

(31)		POS	CMPR	SPRL	
		A	A	A	
	Persian	kam	kam-tar	kam-tar-in	'little'
	Cimbrian	šüa	šüan -ar	šüan -ar-ste	'pretty'
	Czech	mlad-ý	mlad -ší	nej- mlad -ší	'young'
	Hungarian	nagy	nagy-obb	leg- nagy -obb	'big'

• We find, albeit rarely, ABC patterns too:

 $\sqrt{\text{GOOD}}$

(34)		POS A	CMPR B	SPRL C	
	Latin	bon-us	mel-ior	opt-imus	'good'
	Welsh	da	gwell-Ø	gor -au	'good'
	Old Irish	maith	ferr-Ø	dech-Ø	'good'
	Middle Persian	xōb	weh/wah-īy	pahl/pāš-om	'good'
(35)	a. $\sqrt{\text{GOOD}}$ b. $\sqrt{\text{GOOD}}$		/CMI	-	

• As Bobaljik (2012) points out, we never find ABA patterns with comparative suppletion:

(36)		POS	CMPR	SPRL	
		A	В	A	
	Pseudo-English	good	bett -er	good-est	
	Pseudo-German	gut	bess-er	am gut-est-en	'good'

- We cannot derive this pattern due to containment any stem form triggered by CMPR will also be triggered by the SPRL (since it contains CMPR).
- The only way to derive ABA would be to use *accidental homophony*.

- It is generally assumed that learners have a bias to not posit these kind of rules: Accidental homophony is avoided.
- Bobaljik (2012) found that only three of the logically five possible patterns are attested:

(38)			POS	CMPR	SPRL	
	a.	regular	A	A	A	big – bigger – biggest
	b.	suppletive	A	В	В	good – better – best
	c.	doubly suppletive	A	В	C	bonus – melior – optimus
	d.	unattested	A	В	A	*good – better – goodest
	e.	unattested	A	A	В	*good - gooder - best

• Note that AAB is also not found – we will come back to this.

3.2 Adjacency

- Does the *ABA generalization extend beyond comparatives?
- Consider German stem forms:

(39)	Stem	Preterite	Perfect	
	A	A	A	
	sag-	sag-	ge- sag -t	'say'
	lieb-	lieb-	ge- lieb -t	'love'
	A	В	В	
	bring-	brach-	ge- brach -t	'bring'
	schreib-	schrieb-	ge- schrieb -en	'write'
	A	В	С	
	sing-	sang-	ge- sung -en	'sing'
	nehm-	nahm-	ge- nomm -en	'take'
	A	В	A	
	geb-	gab-	ge- geb -en	'give'
	komm-	kam-	ge- komm -en	'come'
	trag-	trug-	ge- trag -en	'give'

- This looks like an ABA pattern.
- In order for this to be a true ABA pattern, the representation of the preterite would have to be properly contained in the representation of the perfect participle:
 - (40) a. STEM
 - b. [[STEM] PRET]
 - c. [[[STEM] PRET] [PERF]]
- Bobaljik (2012) suggests the featural containment relations are actually different (following Wiese 2008):

$$(41) \quad \text{Stem} \qquad \text{Perfect} \qquad \text{Preterite}$$

$$\sqrt{\text{VERB}} \quad \left[(\text{PRES}) \right] \qquad \sqrt{\text{VERB}} \quad \left[\text{PAST} \right] \qquad \sqrt{\text{VERB}} \quad \left[\text{PAST} \right]$$

• Now, we can write rules that derive this in the same way as the comparative:

• So the German ablaut pattern is actually an AAB pattern:

(43)	Stem	Perfect	Preterite	
	[]	[PAST]	[PAST, FINITE]	
	A	A	В	
	geb-	ge- geb -en	gab-	'give'
	komm-	ge- komm -en	kam-	'come'
	trag-	ge- trag -en	trug-	'give'

- But recall that AAB patterns don't seem to be possible in comparative suppletion:
 - (44) *good good-er best
- What would the rules for an AAB comparative pattern have to look like?

(45) a.
$$\sqrt{\text{GOOD}} \leftrightarrow \text{be(tt)-} / \underline{\hspace{1cm}}] \text{SPRI}$$

b. $\sqrt{\text{GOOD}} \leftrightarrow \text{good}$

- Can we rule AAB out for comparatives, while allowing it for verbal stem suppletion?
- Bobaljik (2012) suggests that adjacency could be the crucial factor here.
- Imagine that a context specification can only refer to the immediately adjacent node or a *span* of adjacent heads (see e.g. Merchant 2015; Moskal and Smith 2016).
- The rule in (45a) has to skip the intervening CMPR head (target and trigger not adjacent!)
- In the case of verbal suppletion, the containment is within the same feature bundle (presumably on a head like T). For this reason, the rule for $\sqrt{\text{GIVE}}$ in (42a) would be licit.
- There are remaining challenges for adjacency approaches, e.g. Kiowa (Adger et al. 2009):

 $\bullet\,$ Negative root suppletion applies across an intervening distributive morpheme.

3.3 Domains

• Bobaljik (2012) notes another interesting generalization about comparatives:

(47)			positive	comparative	superlative	
	a.	Greek	kak-ós	cheiró -ter-os	o cheiró -ter-os	'bad'
			kak-ós	pjo kak -ós	o pjo kak -ós	'bad'
	b.	Georgian	Kargi -i	u- mj̃ob -es-i	sa-u- mj̃ob -es-o	'good'
			Kargi -i	upro k'argi -i	q'vela-ze (upro) k'argi -i	'good'

- If a language allows a periphrastic comparative (where CMPR is not affixal) and has suppletion in the synthetic comparative, there is no suppletion in the periphrastic comparative.
- Synthetic comparatives require complex head formation:

- Why can the rule in (49a) not apply in the periphrastic comparative?
- *Assumption:* The delimiting domain for contextual specifications of allomorphy rules is the morphological/morphosyntactic word:

Morphological word

X⁰ is morphological word (MWd) if it is not dominated by another X⁰.

- If the adjective does not move to the head hosting the CMPR feature, an XP boundary separates the target and trigger.
- NB: The rules for *pjo* vs. *-ter* are also subject to the same locality condition.
- We can see these effects elsewhere, too.
- Consider that Korean has two ways of forming negation: short-form negation (NEG attached to verb root) and long-form negation (NEG attached to auxiliary).
- (52) a. eysute-ka **ca**-n-ta
 Esther-NOM sleep-PRES-DECL
 'Esther is sleeping.'
 - b. eysute-ka an(i)/mos ca-n-ta
 Esther-NOM NEG sleep-PRES-DECL
 'Esther isn't sleeping/is not allowed to sleep.'
 - c. eysute-ka **ca**-ci an(i)/mos ha-n-ta
 Esther-NOM sleep-CI NEG do-PRES-DECL
 'Esther isn't sleeping/is not allowed to sleep.' (Chung 2007: 97–98)
- Some roots (e.g. $\sqrt{\text{EXIST}}$) show suppletion in the context of short-form negation:
- (53) a. thuroi mokma-nun **iss**-ess-ta
 Troy wooden.horse-TOP exist-PAST-DECL
 'The Trojan Horse existed.'
 - b. thuroi mokma-nun Ø **eps**-ess-ta
 Troy wooden.horse-top neg exist.neg-past-decl
 'The Trojan Horse didn't exist.'
 - c. thuroi mokma-nun **iss**-ci an(i)/mos ha-yess-ta
 Troy wooden.horse-top exist-ci neg do-past-decl
 'The Trojan Horse didn't exist.'

(Chung 2007: 121)

• NB: Negation is null with root suppletion (mutual conditioning again. cf. worse).

- (55) a. $\sqrt{\text{EXIST}} \leftrightarrow \text{eps-} / \underline{\hspace{1cm}} \text{NEG}$
 - b. $\sqrt{\text{EXIST}} \leftrightarrow \text{iss}$
 - c. NEG $\leftrightarrow \emptyset / \underline{\hspace{1cm}} \{\sqrt{\text{EXIST}}, ...\}$
 - d. NEG \leftrightarrow an(i)/mos

4 Allosemy?

- Are there similar restrictions on context-dependent meanings (*allosemy*)?
- It has been argued that the choice of possible meanings of the root is restricted to the first categorizing head (Marantz 2002):
 - (57) a. globe = 'a spherical object' / 'the world'
 - b. glob-al = 'pertaining the world' / # 'pertaining to a sphere'
 - c. glob-al-ize = 'to make worldwide' / # 'to make spherical'
- This is essential an obligatory ABB pattern (ABA seems to be ruled out)
- Whether this is a fully general pattern is controversial (Harley and Stone 2013).

Adger, David, Daniel Harbour and Laurel J. Watkins (2009). Mirrors and Microparameters: Phrase Structure Beyond Free Word Order. Cambridge University Press: Cambridge. Arregi, Karlos and Andrew Nevins (2012). Morphotactics: Basque Auxiliaries and the Structure of Spellout. Springer: Dordrecht.

- Bobaljik, Jonathan (2000). The Ins and Outs of Contextual Allomorphy. In K. K. Grohmann and C. Struijke (eds). *University of Maryland Working Papers in Linguistics 10*. University of Maryland: College Park. 35–71.
- Bobaljik, Jonathan David (2012). *Universals in Comparative Morphology: Suppletion, Superlatives and the Structure of Words.* MIT Press: Cambridge, MA.
- Carstairs, Andrew (1987). Allomorphy in Inflexion. Croom Helm: London.
- Carstairs-McCarthy, Andrew (2001). Grammatically Conditioned Allomorphy, Paradigm Struture and the Ancestry Constraint. *Transactions of the Philological Society* 99(2). 233–245.
- Chung, Inkie (2007). Suppletive Negation in Korean and Distributed Morphology. *Lingua* 117(1). 95–148.
- Deal, Amy Rose and Matthew Wolf (2017). Outwards-Sensitive Phonologically-Conditioned Allomorphy in Nez Perce. In V. Gribanova and S. S. Shih (eds). *The Morphosyntax-Phonology Connection*. Oxford University Press: Oxford. 29–60.
- Embick, David and Rolf Noyer (2007). Distributed Morphology and the Syntax/Morphology Interface. In G. Ramchand and C. Reiss (eds). Oxford Handbook of Linguistic Interfaces. Oxford University Press: Oxford. 289–324.
- Gribanova, Vera and Boris Harizanov (2017). Locality and Directionality in Inward-Sensitive Allomorphy: Russian and Bulgarian. In V. Gribanova and S. S. Shih (eds). *The Morphosyntax-Phonology Connection*. Oxford University Press: Oxford. 61–90.
- Halle, Morris (1990). An Approach to Morphology. In J. Carter, R.-M. Déchaine, B. Philip and T. Sherer (eds). *Proceedings of NELS* 20. Vol. 1. GLSA: Amherst, MA. 150–184.
- Halle, Morris (1992). The Latvian Declension. In G. Booij and J. van Marle (eds). *Yearbook of Morphology* 1991. Springer: Dordrecht. 33–47.
- Harley, Heidi and Megan Schildmier Stone (2013). The 'No Agent Idioms' Hypothesis. In R. Folli, C. Sevdali and R. Truswell (eds). *Syntax and its Limits*. Oxford University Press: Oxford. 251–273.
- Jenks, Peter and Hannah Sande (2017). Dependent Accusative Case and Caselessness in Moro. In A. Lamont and K. Tetzloff (eds). *NELS 47: Proceedings of the Forty-Seventh Annual Meeting of the North East Linguistic Society*. GLSA: Amherst, MA. 109–119.
- Kiparsky, Paul (2021). Phonology to the rescue: Nez Perce morphology revisited. *The Linguistic Review* 38(3). 391–442.
- Marantz, Alec (2002). Words. Ms. New York University.
- Merchant, Jason (2015). How Much Context is Enough? Two Cases of Span-Conditioned Stem Allomorphy. *Linguistic Inquiry* 46(2). 273–303.
- Moskal, Beata and Peter W. Smith (2016). Towards a Theory Without Adjacency: Hyper-Contextual VI-rules. *Morphology* 26. 295–312.
- Wiese, Bernd (2008). Form and Function of Verbal Ablaut in Contemporary Standard German. In R. Sackmann (ed.). *Explorations in Integrational Linguistics*. John Benjamins: Amsterdam. 97–151.